HOMEWORK QUESTIONS?

Simplify

$$
\left(12 x^{2}-x+4\right)-\left(8 x^{2}-x-3\right)
$$

Multiply
$(3 x-13)(4 x+1)$

A rocket is launched from a rooftop. Its height as a function of time is modeled by the equation

$$
h(t)=-4 t^{2}+60 t+25 .
$$

After how many seconds will the rocket land?

A rocket is launched from a rooftop. Its path is modeled by the equation

$$
y=-4 x^{2}+60 x+25
$$

What is the maximum height reached by the rocket?

A rocket is launched from a rooftop. Its path is modeled by the equation

$$
y=-4 x^{2}+60 x+25
$$

How long did it take for the rocket to reach its maximum height?

A rocket is launched from a rooftop. Its path is modeled by the equation

$$
y=-4 x^{2}+60 x+25
$$

After how many seconds will the rocket be at a height of 20 feet?

The profit P, for the sale of a car as a function of the cost of repair work done r (in hundreds of dollars)) is modeled by the equation

$$
P=2 r(225-r)
$$

What amount of repair work on the car will yield the maximum profit from its sale?

Justen threw a football to his friend, and the height of the football in meters above the ground after t seconds is modeled by $f(t)=-4.9 t^{2}+30 t+13$. Whendid the football hit the ground?

Write the explicit equation for the function represented in the table below:

\mathbf{x}	\mathbf{y}
0	5
1	8
2	11
3	14

Write the explicit equation for the function represented in the table:

\mathbf{x}	\mathbf{y}
0	2
1	5
2	10
3	17

Write the explicit equation for the function represented in the table below:

\mathbf{x}	\mathbf{y}
1	-1
2	-4
3	-7
4	-10

Write the recursive equation for the function represented in the table:

\mathbf{x}	\mathbf{y}
1	5
2	8
3	11
4	14

Give the greatest common factor of
$60 x^{3} y^{2}$ and $24 x^{4} y$.

The Big Bagel Bakery sells more bagels when it drops prices, but then the profit changes too. The function $y=-1000 x^{2}+1100 x-2.5$ models the bakery's daily profit, where x is the bagel price in dollars. What price should they charge to maximize profits?

A skating rink manager
finds the revenue y based on an hourly fee x for skating is represented by

the function
$y=-480 x^{2}+3120 x$.
What hourly fee will produce maximum revenues?

